# Stat question

Question: Is it better in terms of Type I and Type II error to delete tied values or to use the midrank correction?
Use at least three different sample sizes, two different significance levels, two values of “d”, two different distributions, and 10% versus 30% tied values.
Use any test in Chapters 2 – 7 of the text, except for Wilcoxon rank sum, Siegel-Tukey, and two-sample t-test.

Useful code:
## Power for sign test vs. t-test if the distribution is normal
require(coin)
require(rmutil)

Don't use plagiarized sources. Get Your Custom Essay on
Stat question
Just from \$13/Page

powerFun.norm <- function(n,d=1,p=0.5,alpha=0.05,sigma=1,nsims=1000)
{
pval.sign <- numeric(nsims)
pval.t <- numeric(nsims)
pval.wsr <- numeric(nsims)
for (i in 1:nsims) {
dat1 <- rnorm(n,mean=0,sd=sigma)
dat2 <- rnorm(n,mean=d,sd=sigma)
diff <- dat2-dat1
ts <- length(diff[diff > 0])
pval.sign[i] <- binom.test(ts,n)\$p.value
pval.wsr[i] <- pvalue(wilcoxsign_test(dat2~dat1))
pval.t[i] <- t.test(diff)\$p.value
}
power.sign <- length(pval.sign[pval.sign < alpha])/nsims
power.wsr <- length(pval.wsr[pval.wsr < alpha])/nsims
power.t <- length(pval.t[pval.t < alpha])/nsims
return(list(sign = power.sign, WSR = power.wsr, t=power.t))
}
powerFun.norm(10)
powerFun.norm(20)

# Underlying distribution is exponential
powerFun.exp <- function(n,d=0.5,p=0.5,alpha=0.05,sigma=1,nsims=1000)
{
pval.sign <- numeric(nsims)
pval.t <- numeric(nsims)
pval.wsr <- numeric(nsims)
for (i in 1:nsims) {
dat1 <- rexp(n,rate=1)
dat2 <- rexp(n,rate=d)
diff <- dat2-dat1
ts <- length(diff[diff > 0])
pval.sign[i] <- binom.test(ts,n)\$p.value
pval.wsr[i] <- pvalue(wilcoxsign_test(dat2~dat1))
pval.t[i] <- t.test(diff, mu=1)\$p.value
}
power.sign <- length(pval.sign[pval.sign < alpha])/nsims
power.wsr <- length(pval.wsr[pval.wsr < alpha])/nsims
power.t <- length(pval.t[pval.t < alpha])/nsims
return(list(sign = power.sign, WSR = power.wsr, t=power.t))
}
powerFun.exp(10)
powerFun.exp(20)

powerFun.dexp <- function(n,d=1,p=0.5,alpha=0.05,sigma=1,nsims=1000)
{
pval.sign <- numeric(nsims)
pval.t <- numeric(nsims)
pval.wsr <- numeric(nsims)
for (i in 1:nsims) {
dat1 <- rlaplace(n,m=0,s=sigma)
dat2 <- rlaplace(n,m=d,s=sigma)
diff <- dat2-dat1
ts <- length(diff[diff > 0])
pval.sign[i] <- binom.test(ts,n)\$p.value
pval.wsr[i] <- pvalue(wilcoxsign_test(dat2~dat1))
pval.t[i] <- t.test(diff)\$p.value
}
power.sign <- length(pval.sign[pval.sign < alpha])/nsims
power.wsr <- length(pval.wsr[pval.wsr < alpha])/nsims
power.t <- length(pval.t[pval.t < alpha])/nsims
return(list(sign = power.sign, WSR = power.wsr, t=power.t))
}
powerFun.dexp(10)
powerFun.dexp(20)

Order your essay today and save 15% with the discount code: APRICOT

## Order a unique copy of this paper

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
\$26